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Parallel-in-time molecular-dynamics simulations
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While there have been many progress in the field of multiscale simulations in the space domain, in particu-
lar, due to efficient parallelization techniques, much less is known in the way to perform similar approaches in
the time domain. In this paper we show on two examples that, provided we can describe in a rough but still
accurate way the system under consideration, it is indeed possible to parallelize molecular dynamics simula-
tions in time by using the recently introducedparareal algorithm. The technique is most useful forab initio
simulations.
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I. MOTIVATION

Whereas microscopic simulations can be performed
larger and larger space scales, in particular, through the
of multiscale techniques and massively parallel compu
~for a general survey, see Ref.@1#! very few methods are
available to achieve similar results in the time domain. So
schemes have been put forward, for instance followingA.
Voter’s ideas, but they are specifically devoted to the sa
pling of transitions rates assuming that the system obeys
transition theory. In such situations, attempts to cross
barrier can be run in parallel, and one mainly gather statis
from this many runs. This method is extremely efficie
since it leads to linear scaling with the number of process
but it addresses quite a specific situation. Since for sp
through the use of parallel computers, larger and lar
scales have become accessible in microscopic simulation
could be seducing to transpose the same procedures in
time domain. Naturally, contrary to space, time is sequen
and this precludesa priori the straightforward implementa
tion of a parallel approach. Here, we try theparareal@2# idea
which relies on a technique for matching solution segme
in parallel. In practice, one uses two time propagators:
approximate, the so-called ‘‘coarse’’ propagator and the ex
one. As in any parallel implementation of a general proble
there is an unavoidable sequential part which here is
coarse propagation; on the contrary, the~more expensive!
exact propagator is run in parallel on portions of the traj
tory. More specifically, one starts with a first guess of t
trajectory, generated by the coarse propagator for a ce
number of time steps. Each point of this first guess traject
is used as a starting point for the ‘‘fine’’ integrator run on o
or more time steps. Naturally, these steps can be perfor
in parallel. Then, one can estimate the error and correc
parallel to generate the next trajectory. From this, one s
that, if the coarse integrator is fast and the convergence
ward the exact trajectory is rapid, the method will be e
cient. The idea to work on segments of the trajectory,
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reminiscent of the one followed in Refs.@3,4#, in which they
minimize the action, and this variational formulation is th
key to their parallel implementation of the ‘‘stochastic diffe
ence equation’’ approach@5#.

II. DESCRIPTION OF THE METHOD

To explain the technique, we first make a sketchy desc
tion. Let us denote by (u0 , . . . ,uN) the successive configu
rations~position and velocity! of the system we want to de
scribe. If Dt is our time step, andFDt denotes the action o
propagating one configuration for one time step, we ha
naturally for 0<n,N,

un115FDt~un! ~1!

with u0, our initial condition. Propagating forN time steps
the initial configurationu0 is naturally a sequential opera
tion. To introduce parallelism, suppose we are given~the
method to obtain these configurations will be described la!
a set of initial configurations for each time step denoted
(u0

0 , . . . ,uN
0 ), whereu0

05u0. We can propagate withFDt for
one time step all these configurations in parallel, and ge
ate a new set of configurations, (ũ0

0 , . . . ,ũN
0 ). We then have

for 0<n,N,

ũn11
0 5FDt~un

0!. ~2!

If, by accident, we hadun11
0 5ũn11

0 for 0<n,N, our initial
configuration would be exactly the trajectory we are looki
for, and our problem would be solved. In general this will n
be the case and we shall define the error byDn11

0 5ũn11
0

2un11
0 and try to generate a new set of configurations~in-

dexed by the superscript 1! (u0
1 , . . . ,uN

1 ) such thatDn11
1

5ũn11
1 2un11

1 is smaller thanDn11
0 , or at least converge

rapidly to zero when one iterates the process~cf. Fig. 1!.
To be more specific, we need to define how we constr

our first set of configurations, and how we correct it. T
most natural way to construct our first set of configurations
to propagate sequentially forN time steps, our configuration
©2002 The American Physical Society01-1
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at t50 using another force field, much cheaper to comp
than the original one~the coarse force field, as opposed
the fine force field!. We will denote the propagator associat
with it by G, and note that there exists a considerable fr
dom of choice for this field, based on physical consid
ations. Thus our first trial trajectory is defined accordingl

un11
0 5GDT~un

0!,

u0
05u0 , ~3!

for 0<n<(N21).
To correct this trajectory, we use a feedback mechani

If we note that our above definition ofDn
0 is equivalent to

Dn
05FDT(un

0)2GDT(un
0), our feedback expression is simp

un11
1 5GDT~un

1!1Dn11
0 . ~4!

In other words, we propagate our configurations by the sa
coarse force field, starting with the same configuration at
50 correctedby the errorDn11

0 . The process can be iterate
and this defines our successive trajectories, denoted bun

k

wherek is the order of iteration, by

un11
k115GDT~un

k11!1FDT~un
k!2GDT~un

k!,

u0
k5u0 . ~5!

From this formula, one can see how the error in theun
k tra-

jectory ~the last two terms in the right hand side! is ac-
counted for nonlinearly~in general! from iterations to itera-

FIG. 1. Schematic presentation of the feedback process. A
trajectory is generated with the coarse force field~dashed line!
Then, starting from all points of this trajectory, we advance them
one time step in parallel using the fine force field~solid arrows!.
The error is measured byDn

0 . We then generate the corrected tr
jectory ~long dashed line! using the coarse field now shifted byDn

0 .
It moves nearer to the exact trajectory~solid line!. The first step is
exact.
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tions. Also, this error being dependent only onk, can be
computed in parallel, while the first term, dependent onk
11, introduce a sequential part in the algorithm. Let us c
gain of the parareal methodthe ratio g between the wall
clock times, for the computation of the solution by the s
quential algorithm, and the parareal method. In practi
there is an optimal value of this gain that depends on
system, its coarse approximation, the number of availa
processors. Its expression reads

g215kconvS 1

r
1

1

ND1
1

r
, ~6!

where r stands for the ratio between the computing of t
fine and coarse integrators between 0 andDT, and kconv
being the number of iterations. One can also prove easily
induction thatun

n5F0
n(u0), that is, the algorithm yields exac

convergence in at mostN iterations (kconv,N).

III. A SIMPLE ANALYSIS

Consider for now a simple linear system, in which t
propagators are given by multiplication ofu by certain op-
erators denoted byF andG. The parareal formula now read

un11
k115GDTun

k111~FDT2GDT!un
k .

If FDT andGDT commute, the solution is easily found to b

un11
k115FDT

n11u02 (
p5k11

n11

~p
n11!~FDT2GDT!pGDT

n112pu0 .

Naturally, sinceFDT
n11u0 is the exact solution at time (n

11)DT, and the second term of the right hand side is
measure of the error. Back to the general nonlinear cas
Eq. ~5!, we directly state, without proof, an error estimate.
max0<n<NiFDT2GDTi<CDT«, then

max
0<n<N

iun
k2u~Tn!i<C«keC̃T. ~7!

This formula, whose proof is rather technical and will b
presented elsewhere, shows the speed of convergenc
wards the exact solution as a function of the difference of
two propagators.

IV. ONE TOY EXAMPLE OF MOLECULAR DYNAMICS
SIMULATIONS

In this section, we consider a simple asymmetric molec
A2A2B composed of three atoms of massmA51 andmB
52. The bond lengths between atoms are denoted byr AA

andr AB , and the angleA2Â2B of the bonds is denoted a
u. This molecule evolves on the potential surfaceU given by

U~r AA ,r AB ,u!5V~r AA!1V~r AB!1 f ~u!,

where V(r )54«@(s1 /r )122(s1 /r )6# is the Lennard-Jones
potential and f (u)5(l/A2ps2)exp@2(u2p)2/2s2#
1m/sin(u/2). Here, the coarse and fine propagators dif

st

r
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only by the time step used in the discretization of the diff
ential equation. With a coarse propagator corresponding
time step ofDT51023, we obtain the same accuracy
obtained with a very small time step of order 1026 ~required
due to the stiffness of this system! after onlykconv56 itera-
tions of the parareal algorithm leading to a gaing.130 ~see
Fig. 2!.

Here and in Refs.@2,6#, the coarse propagation operat
GDT is based on a large time step discretization of Eq.~1!, in
what follows, we propose a different approach whereGDT is
rather based on a simpler, physically based, modelizatio
our system.

V. TWO EXAMPLES OF AB INITIO MOLECULAR
DYNAMICS SIMULATIONS

Ab initio molecular dynamics simulations are an ideal t
bed for such approaches, in the sense that there are m
available coarse propagators at our disposal, which are
tivated by physical insight. As a first approach, we consi
as a coarse propagator a reduced basis set description o
system, and in the plane wave approach used in theAbinit
package@7#, this is tantamount to use a small cutoff.

We consider, in this case, a very small system consis
of four aluminum atoms in the liquid state, enclosed in
cubic box at normal density, and using periodic bound
conditions. We used the simulation program Abinit, and
norm conserving pseudopotential of the Martin Trouillli
type one can find in the site’s database, built with the F
Haber Institut pseudopotential package. The potentia
somewhat hard, and we need a cutoff of 26 Ha to conve
forces accurately. For the small cutoff, we took 1 Ha, wh
yields 16 plane waves, and this is nearly the minimal va
we can consider for the 8 bands included in the simulati
since we use a broadening of 431022 Ha and onek point.
To make the correspondence with the preceding sectiou
represents collectively the set of all coordinates and vel
ties of all particles. As integrator, we used the velocity Ver

FIG. 2. Behavior of the angleu for moleculeA2A2B, solution
after two parareal iterations and exact solution. Herem5s15s2

51, «5l530. We have performed 104 and 106 time steps, for,
respectively, the coarse and the fine time steps.
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algorithm, which allows to propagate the positions and
locities according to

xn115xn1vndt1F~xn!
dt2

2
, ~8!

vn115vn1@F~xn!1F~xn11!#
dt

2
, ~9!

wherex andv denotes the set of all coordinates and velo
ties of all particles respectively.

In Fig. 3, we represent the first coordinate of one of t
four particles, forN530 time steps~our time step isDT
5100 a.u.) for six parareal iteration steps. The first cur
labeled ‘‘coarse,’’ is the initial trajectory, and it deviates ve
rapidly from the correct one, but already the first iterate
beled ‘‘1,’’ is very good, while it is impossible to distinguis
the trajectories beyondk54, on the scale of the figure. Com
putations with 16 plane waves take really a negligib

FIG. 3. Convergence of the trajectory of the first coordinate
the first particle. The labels denote the value of the indexk. We
present here the 30 first time steps.

FIG. 4. Variation of the total energy~kinetic1potential! corre-
sponding toun

k for the five first values ofk. For k55, energy is
conserved. We again present here the first 30 time steps.
1-3
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amount of time, and one could argue that the gain is
530/4. However, as regarding molecular dynamics, a m
pertinent and in our case more stringent criterion is ene
conservation. In order to use it as a convergence test,
show, in Fig. 4, the difference between the total energy c
responding toun

k and tou0
0 as a function of time for differen

parareal iterations. From this figure, it appears that after
parareal steps, the energy fluctuation is down to its resid
value due to the finite value of the time step in the Ver
algorithm. Using a small cutoff approximation to the ‘‘exac
dynamics is in no way the only option we are left with, a
for a long time physicists have searched for fast and accu
approximations ofab initio force fields. In the case of alu
minum, Ercolessi and Adams@8# have published a force field
that derives from a potential of the ‘‘glue’’ type~very similar
to the embedded atom model potentials of Daw and Bas
@9#!. The general form of this potential is

U5
1

2 (
iÞ j

f~ ur i2r j u!1(
j

F~r j !,

r j5(
iÞ j

r~ ur i2r j u!, ~10!

where the sum runs on the atoms coordinates@10#. We ob-
tain, in this case, very similar results: for a 32 particle s
tem, inN540 time steps, the convergence is reached wit
four iterations. Indeed, one could rightfully argue that w
only get what we give, since the Ercolessi-Adams poten
is fitted on ab initio calculations, but the question of ho
much we loose by using a glue potential in a simulation
been open for a long time, and the present simulation
also be viewed as a way to take advantage of both
proaches. To perform longer simulations, we merely join
ys
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e-
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trajectories together, and tested the method for longer tim
We performed a 1000 time steps simulation this way, and
not observe an energy trend. This is all the more surpris
that our algorithm is not time reversible, and this point wou
require more extensive analysis to be definitevely assese

Naturally, very many other combinations of coarse a
fine integrators can be considered~tight binding andab ini-
tio, simple and complex classical potentials•••) and we are
limited only by our imagination to do so.

VI. CONCLUSION

As a conclusion, we think that the way we introduce t
parareal algorithm in materials science simulations can
very useful in the field of multiscale modeling, and open t
way to new approaches in the time domain. Neverthele
some points remain to investigate before having at our
position a completely efficient method~in particular use of
previous time step solution and clarification of symplec
properties!. One should also note that situations where
know of one expensive and accurate and one cheap and
accurate description of a physical system are quite comm
and extend beyond the limits of material science simulatio

ACKNOWLEDGMENTS

Part of this work was performed during th
CEMRACS 2001 meeting held at Luminy, France, and
would like to thank their organizers, particularly F. Nata
who made this work possible. G.Z. would like to thank
Jollet, Y. P. Pellegrini, C. Guet, and X. Gonze for use
discussions and suggestions, and M. Mareschal and the
ticipants of the CECAM workshop ‘‘Stress Induced Pha
Transformations in Solids’’ for the very lively discussion
about force field approximations.
a
er-

m-
@1# J. Broughton, F. Abraham, N. Berstein, and E. Kaxiras, Ph
Rev. B60, 2391~1999!.

@2# J. Lions, Y. Maday, and G. Turinici, C. R. Acad. Sci., Ser.
Math. 232, 661 ~2001!.

@3# R. Olender and R. Elber, J. Chem. Phys.105, 9299~1996!.
@4# R. Elber, J. Meller, and R. Olender, J. Phys. Chem. B103, 899

~1999!.
@5# V. Zaloj and R. Elber, Comput. Phys. Commun.128, 118

~2000!.
@6# G. Bal and Y. Maday, inRecent Developments in Domain D
. composition Methods, edited by Luca F. Pavarino and Andre
Toselli, Lecture Notes in Computational Science and Engine
ing Vol. 23 ~Springer-Verlag, Berlin, 2002!.

@7# Abinit is a joint project of Universite´ Catholique de Louvain,
Corning glass Inc, and other institutions including the Co
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